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The key issue of observability

• For observation i , we never observe the impact of treatment D ∈ {0, 1} on outcome Y :

Yi (1)− Yi (0)

• What we observe is:

E(Yi | Di = 1)− E(Yi | Di = 0) = E(Yi (1) | Di = 1)− E(Yi (0) | Di = 1)︸ ︷︷ ︸
ATT

+ E(Yi (0) | Di = 1)− E(Yi (0) | Di = 0)︸ ︷︷ ︸
Selection bias

• Selection bias: treated and untreated units would have had different outcomes even without
treatment

• Example: what is the causal effect of installing speed cameras on crash rates?
» What we see: roads with cameras have 12 crashes/year, roads without cameras have 6.
» Naive conclusion: cameras double crashes.
» Selection bias: cameras are installed on risky roads, where crashes were already high

(dangerous intersections, speeding corridors, ...).
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Example

• Problem: the observed difference in mean outcomes does not identify the causal effect:

E(Yi | Di = 1)︸ ︷︷ ︸
=12

−E(Yi | Di = 0)︸ ︷︷ ︸
=6

= E(Yi (1)− Yi (0) | Di = 1)︸ ︷︷ ︸
ATT

+ E(Yi (0) | Di = 1)− E(Yi (0) | Di = 0)︸ ︷︷ ︸
Selection bias > 0 if risky roads get camera

• Sol. 1 (RCT): Randomize where cameras go among eligible locations.
» Identify 100 similar high-risk roads. Randomly assign: 50 roads get cameras, 50 don’t.
» Compare crash rates after installation. Suppose we find that roads with cameras have on average

8 crashes/year, and roads without have 10. Then the estimated causal effect of the cameras is –2
crashes/year.

• Sol. 2 (selection on observables): Control for factors driving camera placement and crash risk.
» Compare camera roads to non-camera roads with similar risk factors (e.g. same traffic volume,

speed limit and measured speeds, number of lanes, lighting, curvature...).
» Conditional on all the risk factors, observed mean difference identifies the causal effect.
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Selection on observables

• Assume that, after controlling for observed covariates Xi , treated and untreated units have the
same average potential outcomes. We have conditional mean independence:

E [Yi (1) | Di ,Xi ] = E [Yi (1) | Xi ] , E [Yi (0) | Di ,Xi ] = E [Yi (0) | Xi ] .

• Under this assumption, the conditional selection bias becomes zero:

E(Yi (0) | Di = 1,Xi )− E(Yi (0) | Di = 0,Xi ) = E(Yi (0) | Xi )− E(Yi (0) | Xi ) = 0

• So the conditional difference in mean outcomes identifies the conditional treatment effect:

E(Yi | Di = 1,Xi )− E(Yi | Di = 0,Xi ) = E(Yi (1)− Yi (0) | Xi ) = CATE(Xi )

and, taking the unconditional expectation:

E
(
E(Yi (1)− Yi (0) | Xi )

)
= E (Yi (1)− Yi (0)) = ATE
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Example (cont’d)

• Let Xi ∈ {H, L} denote road risk. Within each risk group, cameras reduce crashes:

D = 1 (camera) D = 0 (no camera)
X = H (high risk) E(Y | D = 1,H) = 16 E(Y | D = 0,H) = 18
X = L (low risk) E(Y | D = 1, L) = 0 E(Y | D = 0, L) = 2

So E (Y | D = 1,X )− E(Y | D = 0,X ) = −2 < 0 for both X = H and X = L.

• Selection into treatment: cameras are more likely on high-risk roads:

P(H | D = 1) = 0.75, P(H | D = 0) = 0.25.

=⇒ E(Y | D = 1) = 0.75 ·16+0.25 ·0 = 12, E(Y | D = 0) = 0.25 ·18+0.75 ·2 = 6.

• Simpson’s paradox: cameras reduce crashes within each risk group, but the overall difference
is positive:

E(Y | D = 1)− E(Y | D = 0) = 12 − 6 > 0,

because treated roads contain a much larger share of high-risk locations (selection bias).
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Recap: independence assumptions

Unconditional Conditional on X

Full
independence

(Y (1),Y (0)) ⊥⊥ D

same distribution across D

(Y (1),Y (0)) ⊥⊥ D | X

same distribution across D within each X

Mean
independence

E [Y (0) | D] = E [Y (0)]
E [Y (1) | D] = E [Y (1)]

same means across D

E [Y (0) | D,X ] = E [Y (0) | X ]

E [Y (1) | D,X ] = E [Y (1) | X ]

same means across D within each X

• To remove selection bias in the mean, it is enough to assume mean independence.
• In an RCT, randomization gives full independence. This supports comparisons beyond

averages (e.g. quantiles or tail probabilities), with minimal modeling.
• With non-experimental data we assume conditional mean independence given X ; the main risk

is unobserved confounding (omitted variables correlated with both D and Y ).
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Common support

• We have seen that:

CATE(Xi ) = E(Yi | Di = 1,Xi )− E(Yi | Di = 0,Xi ).

So, to identify the conditional treatment effect, we need to observe both E(Yi | Di = 1,Xi )

and E(Yi | Di = 0,Xi ). This requires an additional key assumption.

• Common support: for all x in the support of X ,

0 < P(Di = 1 | Xi = x) < 1.

• Intuition: within each covariate group X = x , we need both treated and untreated units.
Otherwise, we extrapolate counterfactual outcomes outside the data and the estimated effect
is driven by modeling assumptions.

• Example: if all high-risk roads get cameras and no low-risk roads do, we cannot estimate the
within-risk effect.
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Propensity score

• If the dimension of X is large, estimating E(Yi (d) | Di = d ,Xi = x) is imprecise (few
treated/controls within each X -cell).

• Solution: summarize all information in X into a one-dimensional variable, the propensity score:

π(x) = P(Di = 1 | Xi = x).

• Balancing property: conditional on π(Xi ), covariates are balanced across treatment:

Di ⊥⊥ Xi | π(Xi ).

Intuition: once you condition on the probability of treatment implied by X , knowing X gives
no additional information about whether D = 1.

• If selection on observables holds given Xi , then it also holds given the propensity score. Hence,
controlling for π(Xi ) is enough to remove selection bias.

• For identification we still need common support: 0 < π(Xi ) < 1.
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Application

• There is a (fictional) government program aiming at reducing the use of pollutant fertilizer in
carrot production by subsidizing the supply of organic fertilizers (minerals).

• To investigate whether the program is effective, a pilot is run in 5 French regions: a fixed
quantity of minerals per hectare is given to the first 200 farms that apply.

• In the dataset: farm’s identifier (id), characteristics (size, protected, ...), and use of
pollutant fertilizer (fertilizer_2018, and fertilizer_2020);
the dummy variable eligible equals 1 if the farm is located in one of the eligible regions;
the dummy variable d equals 1 if the farmer receives the minerals.

• Questions:

» What is the unit of observation?
» What are the treatment and outcome variables?
» Is there randomization?
» Could we have selection bias?
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Application (cont’d)

• We work with simulated data: we know the data generating process, including the effect of
the covariates on the outcome, and we measure how far our estimates are from the true
coefficients.

• In particular, we know the ATE: E(Yi (1)− Yi (0)) = −10 kg/Ha.

• We can try regressing:
Yi = α+ βDi + ϵi .

The coefficient β̂ is an estimate of

E(Yi |Di = 1)− E(Yi |Di = 0) = ATT + selection bias.

Remember: selection bias = E (Yi (0)|Di = 1)− E(Yi (0)|Di = 0).
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Application (cont’d)

• Alternatively, try controlling for Xi :

Yi = α+ βDi + X ′
i γ + ϵi .

Assume:
» selection on observables: conditional selection bias is zero and conditional difference in

mean outcomes identifies the conditional treatment effect;
» constant treatment effect: CATE(Xi ) = τ, ∀Xi ;
» correct specification for the X part.

Then the OLS coefficient β̂ recovers the ATE.

• You can also use the propensity score:

Yi = α+ βDi + f
(
π̂(Xi )

)
+ ϵi .

» Useful when X is high-dimensional,
» but can reduce precision and is sensitive to how we model f (·), π̂(Xi ) and to common

support.
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