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The key issue of observability

® For observation i, we never observe the impact of treatment D € {0,1} on outcome Y:
Yi(1) = Yi(0)

® \What we observe is:
E(Yi| Dy=1) — E(Y:| D, = 0) = E(Yi(1) | D; = 1) — E(¥;(0) | D = 1)

ATT

+ E(Yi(0) | D = 1) — E(Yi(0) | Di = 0)

Selection bias

® Selection bias: treated and untreated units would have had different outcomes even without

treatment
® Example: what is the causal effect of installing speed cameras on crash rates?
» What we see: roads with cameras have 12 crashes/year, roads without cameras have 6.

» Naive conclusion: cameras double crashes.
» Selection bias: cameras are installed on risky roads, where crashes were already high

(dangerous intersections, speeding corridors, ...).
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Example

® Problem: the observed difference in mean outcomes does not identify the causal effect:

E(Yi | D =1) = E(Yi| Di = 0) = E(Yi(1) - Yi(0) | Di = 1)
+ E(Yi(0) | Di = 1) — E(Yi(0) | Di = 0)

Selection bias > 0 if risky roads get camera

® Sol. 1 (RCT): Randomize where cameras go among eligible locations.
» Identify 100 similar high-risk roads. Randomly assign: 50 roads get cameras, 50 don't.
» Compare crash rates after installation. Suppose we find that roads with cameras have on average
8 crashes/year, and roads without have 10. Then the estimated causal effect of the cameras is -2
crashes/year.

® Sol. 2 (selection on observables): Control for factors driving camera placement and crash risk.
» Compare camera roads to non-camera roads with similar risk factors (e.g. same traffic volume,
speed limit and measured speeds, number of lanes, lighting, curvature...).
» Conditional on all the risk factors, observed mean difference identifies the causal effect.
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Selection on observables

® Assume that, after controlling for observed covariates X;, treated and untreated units have the
same average potential outcomes. We have conditional mean independence:

ELYi(1) | D X] = E[V:(1) | X1, E[Yi(0) | Di.Xi] = ELYi(0) | Xi].
® Under this assumption, the conditional selection bias becomes zero:
E(Yi(0) | Di = 1,X;) — E(Yi(0) | D; = 0, Xi) = E(Yi(0) | X;) — E(Yi(0) | Xi) =0

® So the conditional difference in mean outcomes identifies the conditional treatment effect:
E(Yi| Di=1,X) — E(Y; | D; = 0,X;) = E(Y:(1) — Yi(0) | X;) = CATE(X))
and, taking the unconditional expectation:

E(E(Yi(1) = Yi(0) | Xi)) = E(Yi(1) — Yi(0)) = ATE
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Example (cont'd)

® Let X; € {H, L} denote road risk. Within each risk group, cameras reduce crashes:

‘ D =1 (camera) D =0 (no camera)
E(Y D=1,H)=16 E(Y|D=0H)=18
E(Y|D=1,L)=0 E(Y|D=0,L)=2

X = H (high risk)
X = L (low risk)

So E(Y|D=1,X)—E(Y|D=0,X)=—-2<0 for both X =H and X = L.
® Selection into treatment: cameras are more likely on high-risk roads:
P(H| D =1)=0.75, P(H| D =0)=0.25.
—  E(Y|D=1)=075-164025-0=12, E(Y|D=0)=0.25-18+0.75-2 = 6.
® Simpson’s paradox: cameras reduce crashes within each risk group, but the overall difference

is positive:
E(Y|D=1)—E(Y|D=0)=12-6> 0,

because treated roads contain a much larger share of high-risk locations (selection bias).
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Recap: independence assumptions

Unconditional Conditional on X
Full (Y(1),v(0)) L D (Y(1),Y(0)) LD | X
independence same distribution across D same distribution across D within each X
E[Y(0) | D] = E[Y(0)] E[Y(0) | D,X] = E[Y(0) | X]
Mean E[Y(1) | D] = E[Y(1)] E[Y(1) | D, X] = E[Y(1) | X]
independence
same means across D same means across D within each X

® To remove selection bias in the mean, it is enough to assume mean independence.

® In an RCT, randomization gives full independence. This supports comparisons beyond
averages (e.g. quantiles or tail probabilities), with minimal modeling.

® \With non-experimental data we assume conditional mean independence given X; the main risk
is unobserved confounding (omitted variables correlated with both D and Y).
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Common support

® \We have seen that:
CATE(X;)) = E(Y; | Di=1,X;) — E(Y: | Di =0, X)).

So, to identify the conditional treatment effect, we need to observe both E(Y; | D; =1, X;)
and E(Y; | Di =0, X;). This requires an additional key assumption.

® Common support: for all x in the support of X,
0<P(D,‘=1|X,‘=X)<1.

® [Intuition: within each covariate group X = x, we need both treated and untreated units.
Otherwise, we extrapolate counterfactual outcomes outside the data and the estimated effect
is driven by modeling assumptions.

® Example: if all high-risk roads get cameras and no low-risk roads do, we cannot estimate the
within-risk effect.
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Propensity score

® If the dimension of X is large, estimating E(Y;(d) | D; = d, Xi = x) is imprecise (few
treated/controls within each X-cell).

® Solution: summarize all information in X into a one-dimensional variable, the propensity score:

7T(X) = P(D,' =1 | X,' :X).

® Balancing property: conditional on 7(X;), covariates are balanced across treatment:
D; 1L X; | 7(X;).

Intuition: once you condition on the probability of treatment implied by X, knowing X gives
no additional information about whether D = 1.

® [f selection on observables holds given X;, then it also holds given the propensity score. Hence,
controlling for w(X;) is enough to remove selection bias.

® For identification we still need common support: 0 < 7(X;) < 1.
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Application

® There is a (fictional) government program aiming at reducing the use of pollutant fertilizer in
carrot production by subsidizing the supply of organic fertilizers (minerals).

® To investigate whether the program is effective, a pilot is run in 5 French regions: a fixed
quantity of minerals per hectare is given to the first 200 farms that apply.

® In the dataset: farm'’s identifier (id), characteristics (size, protected, ...), and use of
pollutant fertilizer (fertilizer_2018, and fertilizer_2020);
the dummy variable eligible equals 1 if the farm is located in one of the eligible regions;
the dummy variable d equals 1 if the farmer receives the minerals.

® Questions:
» What is the unit of observation?
» What are the treatment and outcome variables?
» Is there randomization?
» Could we have selection bias?
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Application (cont’'d)

® \We work with simulated data: we know the data generating process, including the effect of
the covariates on the outcome, and we measure how far our estimates are from the true
coefficients.

® In particular, we know the ATE: E(Yi(1) — Y;(0)) = —10 kg/Ha.

® We can try regressing:
Yi=a+ BD; +¢.

The coefficient 3 is an estimate of
E(Yi|D; =1) — E(Y;i|Di = 0) = ATT + selection bias.

Remember: selection bias = E(Y;(0)|D; = 1) — E(Y;i(0)|D; = 0).
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Application (cont’'d)

e Alternatively, try controlling for X;:
Y; = a+ BD; + X/ + €.
Assume:
» selection on observables: conditional selection bias is zero and conditional difference in
mean outcomes identifies the conditional treatment effect;
» constant treatment effect: CATE(X;) =7, VXj;
» correct specification for the X part.

Then the OLS coefficient 3 recovers the ATE.

® You can also use the propensity score:
Yi=a+ ﬂD,’ + f(fr(X,)) + €;.

» Useful when X is high-dimensional,
» but can reduce precision and is sensitive to how we model f(-), #(X;) and to common

support.
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